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Abstract
In safety critical control domains, such as Air Traffic Man-
agement (ATM), a detailed understanding of the complex
interactions and workflow of users is essential for improving
the design of supporting tools. However, few frameworks
account for temporal sequences of actions and levels of
cognitive control. In this paper, we discuss how interac-
tion in the control room can be seen as processes formed
by a framed sequence of directly and indirectly related
events, external events as well as user actions. To untangle
this complexity, we propose to combine different analysis
approaches, the Joint Control Framework and visual se-
quence mining, which can complement each other to reveal
patterns of interactions within and between the processes
and assign meaning to them.
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Introduction
An understanding of the temporal flow of events and ac-
tion of users in a situation is key to interaction design. This
long-time problem applies particularly to next generation
control rooms where operators manage critical processes
and where AI-support is likely to manifest. Several theo-
retical frameworks have been proposed to elucidate such
interactions, like Distributed Cognition [4], Situated Cogni-
tion [12], The Extended Control Model (ECOM) [3], or the
Decision Ladder (DL) [11]. However, these frameworks sel-
dom describe in any greater detail how to treat micro-level
interactions and temporal flow of events and interactions.
Naturally, progress in this field would endow a deeper un-
derstanding of what constitutes "interaction", strengthen the
design field and provide ways to improve system evaluation.

Today, it is possible to capture rich data of users’ interac-
tions in laboratory settings and during simulation exercises.
For example, data from simulator studies in air traffic con-
trol (ATC) typically include eye and head tracking, screen
capture, dialogue, as well as user-induced interaction such
as mouse pointer positions and on-screen manipulation of
physical objects. Moreover, the simulator provides external
state information in terms of sectors, aircraft positions and
their flight status. In the real-world as well as in the simula-
tor, interactions and events occur in a temporal sequence.
Some sequences recur in similar ways, over time, reflecting
persisting patterns and regular states. However, sequences
play out on different time scales, and belong to different
kinds of processes. Some are millisecond transitions of
gaze between visual areas in visual scan processes, while
others are object movements in transport processes that
occur over minutes rather than microseconds. Neverthe-
less, a core challenge in this research is to go from observ-
able interaction and system behaviour data to an under-
standing of temporal process control.

In this paper, we explore how temporal analysis of joint
control can be achieved by using the Joint Control Frame-
work (JCF) [5] going from interaction data to understand-
ing of control and how that manual analysis could be com-
bined with automated analyses through sequence mining.
The paper is structured as follows: (1) introduction of ap-
proaches to understanding temporal interaction data, (2) Air
Traffic Management (ATM) and a control case is introduced,
(3) manual analysis of control processes using the JCF, and
(4) exploration of patterns in control process through inter-
active visual sequence mining. We conclude the paper by
discussing how this approach can be extended by use of
other methods and other interaction data.

Understanding Temporal Interaction Data
Complex interaction processes can be seen as a sequence
of events. In the case of ATM tower control, the events com-
prising the sequence can be positions of moving objects
in the controllers field of view; interactions of the controller
with the working environment; and attention focus of the
controller in terms of eye-gaze fixations to visual areas of
interest. Commonly, the analysis of processes is concerned
with studying and understanding how the events and control
interactions building up the process evolve and influence
each other. As such, shorter combinations/sequences of
events that exhibit an interesting behaviour can be identified
as patterns in the data. This interesting behaviour can be
that they appear frequently in the data, that they are recur-
ring in relation to certain situations, or that they are diverg-
ing from the expected workflow (outliers). During the analy-
sis process, sequences representing entire processes can
be broken up into shorter defined periods of time, episodes.

To analyze such data sets, quantitative and qualitative ap-
proaches can be used separately or combined. This also
applies to the extraction of the data to be analyzed. For in-



stance, if eye gaze data is collected, one approach is to
divide a visual area into areas-of-interest and then trans-
form the eye tracking part of the data set into sequences of
visual movements [16]. Gaze points can also be clustered
using algorithms into areas of attention [8], but the analyst
must still assign some meaning to these areas. When divid-
ing into areas of interest, we already start to assign mean-
ing, qualitatively, to this quantitative, object-related data.

When analyzing combinations of events as patterns in
complex process, we would need to consider that they are
state-dependent. Patterns in this rather raw data set could
be found even in non-linear processes [14]. This can for
instance be based on similarity of current data points ver-
sus patterns of previous points, rather than finding linear
correlations between variables. The presence of patterns
allows a prediction to be made about the next point (sim-
plex projection). It is also possible to distinguish between
random variations in data versus data that is state depen-
dent [13]. Further, analyses of data over time can then be
performed e.g. centered around populations (Cross-Lagged
Panel Model) or individuals (the Random-Intercept Cross-
Lagged Panel Model), for details see [7]. However, regard-
less of analytical approach, these patterns would neverthe-
less be close to the data set, e.g. be object-centered (e.g.
gaze-point-on; object-that-moves). Further, combining data
points into areas of interest or attention, changes the data
set by merging smaller points (fixations) into larger points.

All together, this creates analytical complexity. On the one
hand, analytical complexity poses a challenge for purely
manual analyses (even with the help of dedicated tools),
since anything but very short episodes would take much
time into account to analyse. On the other hand, this also
poses a challenge for purely quantitative models of interac-
tions. Although, it is possible to find meaning even in non-

linear interactions using analysis of the raw data sets, a
hybrid approach may be more promising than using only a
"brute force" analysis of the raw data. This will be outlined
and discussed in the remainder of the paper.

Application Area - Air Traffic Management
ATM is a control domain where one can find complex inter-
action processes. The core value of ATM is to maintain safe
and well ordered air traffic. Typically, many processes oc-
cur at the same time, each with its own goals and priorities.
One aircraft may prioritize being on time while another pri-
oritizes fuel efficiency. This variation of intentions increases
process variety. Variations in weather and in performance
of aircraft and people in carrying out plans creates further
variety. For example, a one-second difference in initiating
a turn creates large difference in the resulting path. Many
processes occur in real-time and are generally not possi-
ble to put on hold, making time a core constraint as control
must be process-paced. The processes are often entan-
gled in a network of plans and paths, intersecting, turning,
and requesting short-cuts. Each of these object processes
are also enmeshed in a system of control processes as
they are being observed and guided versus situations in the
airspace. In many of these processes, the actors/subjects
are humans - Air Traffic Controllers (ATCO) - but they could
just as well be automated systems. It is important to note
that those systems are not fused into one coherent sys-
tem, but can be seen as a rather loose network of interde-
pendent sub-systems. The multitude of subjects is another
source of complexity of the control processes, as is the fact
that not all interactions made by the ATCOs are to control
the processes. Sometimes they just un-clutter the inter-
face (e.g. moving aircraft radar labels) or idle-fiddling with
the Human-Machine Interface (HMI), thus creating noise in
human-interface interactions. For an external observer, the
interactions are therefore not always easy to understand.



An ATM Case
In Lundberg et al. [6], episodes with entangled processes
from a scenario recorded in an air traffic control tower simu-
lator were analysed with respect to gaze patterns and (lack
of) automation in an ATM system. The analyses were made
by manually analyzing the raw data, identifying and map-
ping interactions and gaze patterns recorded with eye track-
ing glasses. The result was tables of interactions/events
and gaze distribution among areas of interest. In the fol-
lowing, we will look into one these episodes to form a basis
for discussion. The main process for the ATCO was to con-
trol a departing aircraft (DLH4YJ) affected by the entangled
processes of controlling two other aircraft, one departing
aircraft (NTJ228G), and an aircraft (SEMBJ) flying over the
airport. NTJ228G affected the main process by causing
a runway incursion (entering the runway without permis-
sion) and SEMBJ by drawing attention from the critical sit-
uation when calling up on the radio at the same time. The
ATCO detected the runway incursion in the last second and
stopped the aircraft about to take-off (DLH4YJ).

Joint Control Framework,
Notions and Definitions

Process types: External,
control, and interface.

Object: What is controlled
and interacted with in the
process.

Subject: The agent control-
ling and interacting with the
objects.

Joints: Points in time when
the subject is interacting
with the process, three ba-
sic types: Perception Points
(PP), Decision Points (DP),
and Action Points (AP).

Analytical Approaches
With the presented ATM case as starting point, we will now
exemplify a qualitative and a quantitative approach to tackle
the challenges of analyzing, complex, temporal interaction
data. The former is based on using the JCF framework and
the latter on an interactive sequence mining approach.

Modelling with the Joint Control Framework
The Joint Control Framework [5] was selected as a qualita-
tive approach. It shares properties with other frameworks
like the Extended Control Model (ECOM) [3], or the De-
cision Ladder (DL) [11] with respect to interaction levels.
However, JCF also includes a notation for temporal analysis
of interactions (see Fig. 1).

The JCF characterises control relations as consisting of
subject(s) (the controller) and object(s) (the controlled) -
joints. There can be many types of joints, but three that re-
cur in literature are the perception joint, action joint, and de-
cision joint [5]. These are also central in circular/cybernetic
models of activity, such as the action "gulfs" in Cognitive
Engineering [10], the Contextual Control Model [3], or the
basic Perceptual Cycle [9]. Placing these joints on time-
lines, between subjects and objects creates points in time:
Perception Points (PP), Decision Points (DP), and Action
Points (AP). Data points such as eye tracking converted
to areas of interest, interface action logs, usually describe
the object level (e.g. using levers, buttons, or some other
physical means). This analysis concerns the meaning of
the interactions, with regard to the process being controlled.

Perception, decisions, and actions can take place at six dif-
ferent Levels of Cognitive Control (LACC) from setting high
level frames of what goes on (Level 6, Frames) to physi-
cal object status or actions (Level 1, Physical) (see [5] for
details). This analysis thus concerns the meaning of the in-
teractions, with regard to the process being controlled. For
example, is it an interaction regarding generic plans that
can recur over time and place (Level 3, Generic), or does it
concern implementation constraints such as the length of
the runway (Level 2, Implementation)? Or does it refer to an
interaction concerning trade-offs between conflicting goals
(Level 4, Values), or that appraises the degree of achieving
various effect goals (Level 5, Effects)?



Figure 1: JCF scores. The processes are represented in one
six-line score each. Each line in the scores represent a LACC
level, level 1 to 6 from bottom up, and the horizontal axis
represents time. The analyzed video recording is shown in the
background. Joints are represented by orange and green dots on
the lines (PP and AP respectively), their vertical and horizontal
positions represent LACC level and time respectively.

Figure 2: The same score as in
Fig.1 but with added AP, blue
dots. These AP where not
explicitly present in the data set
and therefore left out in the first
round of analysis. In three of
the scores, patterns of DP, AP,
and PP can be seen - a
decision is made (DP), the
action is carried out (AP), and
the action is then confirmed
(PP).

JCF Analysis of the runway incursion scenario
The original analysis of the runway incursion episode [6]
was remodelled using the JCF. In JCF, scores are used to
display parallel-related processes. Each score consists of
six parallel lines, each corresponding to one of the LACC
levels. Fig.1 shows the JCF score notation with four dif-
ferent scores. The three processes directly involved in the
episode were modelled in one score each (top, second,
fourth). The entangling processes (the crossing aircraft
and the aircraft causing the runway incursion) are shown
in the two upper scores. The main process of the departing
DKH4YJ is the bottom score. The second score from the
bottom represent all events in other processes not directly
affecting the main process. They do however give a richer
picture of the overall work context. Green and orange dots

represent PP and AP respectively. DPs are not included as
they were not explicitly present in the data set. The dots’
horizontal position corresponds to the LACC where the in-
teraction with the process occurs. All scores are aligned in
time. Note that events in the main process (lowest score)
and the entangling processes (two top scores) occur very
close in time at the end of the scores, which is when the
runway incursion takes place.

Fig. 2 shows how the JCF score could look like with ten-
tative positions of DPs (blue) added. The bottom score
(departing DLH4YJ process) has two DPs. The first one
occurs when the controller realizes that NTJ228G has en-
tered the runway without permission and that the take-off
clearance for DLH4YJ must be cancelled. In this example,
we tentatively position it after the PP and next to the AP. It
is an immediate response to a situation, no new plan is de-
cided upon. The second DP in the same (bottom) score is
a re-framing of the situation reflecting the runway incursion.
New plans are made to solve the situation. The first part
of the plan is then implemented by giving new clearances
(actions, green) for NTJ228G to vacate the runway, shown
in the second top score in Fig.2 as two sequences of DP,
AP, and a PP. The PP occurs when the confirmation of the
action is perceived.

Consequently, we can see how the manual JCF analysis
can add meaning to the sequential data by categorizing
its parts into APs and PPs and by estimating new DPs.
It transforms the data set by dividing points over different
scores; by positioning the points (vertically) on the LACC as
well as filters the data set by excluding idle fiddling with the
HMI or other interface-level actions that are not joints with
related external processes.



Interactive Visual Sequence Mining of Processes
Viewing a process as an event-sequence also makes it pos-
sible to use algorithmic approaches based on sequential
pattern mining for their analysis. Sequential pattern min-
ing is concerned with the identification of sub-sequences of
events as patterns, which closely matches the analysis pur-
pose of complex process as previously discussed. Agrawal
and Srikant [1], initially introduced the problem of mining
sequential patterns in the context of market basket analy-
sis. However, the vast number of systems that produce data
which are inherently sequential in nature make the appli-
cability of the approach very broad, leading to a multitude
of algorithms aiming at extracting sequential patterns from
large complex datasets being available in the literature [2].

A common problem of most traditional data mining algo-
rithms is that they identify long lists of patterns, many of
which are uninteresting or irrelevant to the specific user
and their analysis task. To reduce the produced results to a
manageable size, strict constraints are commonly posed to
the algorithms so that only frequent patterns are identified.
This, however, is problematic when the focus of the analysis
is to understand the particularity of processes where the re-
lationships of interest are not necessarily identified by their
frequency of occurrence. Moreover, traditional algorithms
commonly operate as a “black box” where the contribution
of the analyst/user who will benefit from their results, is lim-
ited to adjusting some initial parameters which act as con-
straints on the algorithms. These facts can impede the use-
fulness of such algorithms in real world analysis scenarios
of complex processes that require flexibility of exploration
and where the main focus is not frequency. To overcome
these issues Vrotsou and Nordman [15] have proposed an
exploratory visual sequence mining approach that enables
a user to guide the execution of a pattern-growth algorithm
towards directions of interest through a interactive visual

interface. The approach gives the user control over the min-
ing process by allowing them to choose which sequence
patterns to grow, and dynamically apply local constraints. A
pattern tree representation is used for visualizing the pat-
terns and interacting with the mining algorithm.

In the context of ATM, the patterns sought are sub-sequences
of events during an ATC process that are interesting for
some reason. They could, for example, be frequently re-
peating indicating a common behaviour, they could be devi-
ating from an expected behaviour indicating outliers, or they
could be leading up to an unwanted situation indicating a
potentially dangerous pattern. As such, the approach pro-
posed by Vrotsou and Nordman [15] lends itself well to the
task. The applicability of the approach for identifying and
exploring visual scan patterns in tower control scenarios
was demonstrated in [16].

Even though there are in ATC not standardized visual scan
patterns that all ATCOs should be following, there are cer-
tain patterns that are expected in certain ATC scenarios as
was discussed by Westin et al. [16]. Having this in mind,
the exploratory sequence mining approach of Vrotsou and
Nordman can be used in the following way for analysing
the specific ATM case scenario introduced previously. The
different events taking place in the scenario should be ex-
tracted and composed into a single sequence representing
the process. An analyst could then explore the unfolding
sub-processes in search of interest patterns by selecting
and growing different parts of the pattern tree (exploring dif-
ferent patterns). Common visual scan patterns could be for
example be sought for and their occurrence in the case sce-
nario could be explored. The most common expected visual
scan pattern of an ATCO during the departure of an aircraft
is to perform repeated runway scans to ensure that the run-
way is clear for take-off. The runway scans appear as an



uninterrupted sequence of visits to the visual Areas of In-
terest (AOI) representing the runway. The runway incursion
caused by NTJ228G will thus be represented as a broken
pattern in the data. Moreover, crucial events could be cho-
sen as a target event, for example the event of the ATCO
stopping the take-off of DLH4YJ, and the sub-sequences
leading up to that event could be explored by mining and
exploring patterns leading up to that event.

Discussion and Conclusions
We have addressed a key problem in interaction design for
control rooms - to post analyze and understand the tem-
poral flow of events and actions of users in a dynamic sit-
uation. Multiple source data sets from complex domains
as ATM tend to get very large. These amounts of complex
data must be possible to analyze in adequate depth within
reasonable time.

We have exemplified, for short episodes with a limited num-
ber of data sources, how JCF can be used for untangling
different processes and identifying relevant events within
them by transforming, enriching and filtering the data as de-
scribed above. However, when applied on larger data sets,
this manual approach may be too time consuming. It also
relies heavily on the expertise of the analyst. Sequence
mining is better suited for analysing larger data sets and
has the ability to reveal interaction patterns, but less can be
known about the meaning of the interactions and the con-
text in which they appear. Using the interactive sequence
mining approach, the runway incursion above is initially rep-
resented merely as a broken pattern, rather than as a run-
way incursion. Further, JCF divided the situation into four
scores; they are not uninterrupted sequences as assumed
in the sequence mining approach. This adds to the amount
of broken sequences identified. The sequence mining will
also include e.g. "fiddling" that is filtered out in JCF.

We envision two ways in which the two approaches could
be combined to enable more in-depth process analysis.
The combination is concerned with enriching the performed
sequence mining analysis with qualitatively extracted event
data created through JCF. For example, JCF joints could
be imported as events in the sequences in order to add
more context and include these in the mined patterns. The
second combination is concerned with the application of in-
teractive visual sequence mining to a collection of JCF an-
alyzed episodes. In this setting, the resulting sequences of
joints produced by the JCF analysis could be used as input
sequences into the sequence mining approach to compare
them and identify patterns between them. So, for example,
several runway incursion episodes could be initially ana-
lyzed in JCF and the produced sequence representations
of the process could be then mined for common patterns,
in search of similar problem-solving strategies and/or be-
haviours between ATCOs.

Combining sequence mining and JCF analyses has the po-
tential to provide knowledge of both the interactions from
a quantitative perspective and the control processes from
a more qualitative perspective. This would require a more
advanced interactive approach, to use the JCF transforma-
tions, reductions, and enrichment’s together with mining of
data. Our current research is focusing on just this combi-
nation. Furthermore, AI and machine learning approaches,
building on results from the sequence mining, could be an
additional way forward. Extrapolating that thought could
even take us to analyzing the processes in real-time. That
is however, one step ahead in our future work.
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