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ABSTRACT

In the present paper we will approach enactivism from the per-
spective of internal regulation: while the environment shapes
the organism, it is also true that organisms have complex inter-
nal states with regulatory machinery with a set of continuous
phenotype-environment interactions. The aim of the present
paper is to provide a visual means to analyze these interactions
in individuals and computational agents alike. An essential
component of our approach is the representation of continuous
internal states through the usage of the single continuous indi-
cator we call an Allostasis Machine (AM). Consequently, we
consider potential perturbation regimes for both naturalistic
and virtual environments: within the naturalistic cases, it is
possible to observe the effects of perturbations in isolation,
or as overlapping, multiplicative events. In virtual cases, we
can observe perturbations as the outcome of both realistic
and fantastical environments. To conclude, we discuss how
AMs can be utilized to improve our understanding of both
the theoretical basis of embodied interaction and the dynamic
regulation of complex psychophysiological states.
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WORKSHOP CONTRIBUTION SUMMARY

By proposing a model of allostasis machines, we wish to
address three issue with respect to real-time cognition and cog-
nitive complexity: characterizing responses to naturalistic and
technical environments as a dynamical system, providing a
means to describe and perhaps predict regulatory changes over
time. While allostasis machines apply a cybernetics approach,
they also serve as a visualization to describe changes at multi-
ple scales of the human user. Allostasis machines can provide
insight into specific psychophysiological measures such as
EEG or EKG, while also serving as a metric of change for spe-
cific cognitive functions such as real-time attention. Allostasis
machines can also be used to visualize hard-to-measure phe-
nomena such as perceptual stability in a naturalistic setting.
By shifting the metaphor of nervous system from the com-
puter analogy to a language of dynamic regulation, we plant
the seeds for a new area of academic inquiry (Neuro-HCI).
This submission serves as a first step towards developing a
quantitative model of allostasis that approximates influences of
both a user’s biology (bottom-up influences) and interactions
between the body and environment (top-down influences). In
this way allostasis machines advance our knowledge of hu-
man performance as a biologically-situated enactive system,
particularly during continuous interactions with technological
environments such as virtual environments and touch screens.

INTRODUCTION

There are many exciting opportunities to unify Human-
Computer Interaction (HCI) concepts with Neuroscience.
Some of these involve the implementation of brain-computer
interfaces [41], which results in a number of intentional and
unintentional feedback mechanisms [32]. Contrary to that ap-
proach, we propose that both the Neuro-HCI interdisciplinary
relationship and the associated feedback mechanism is much
richer: feedback mechanisms result in dynamic regulation,
and can be understood as a relationship between the body, the
internal model, and the environment.

In this context, we propose that the brain is not a computer, or
extension of a computer, but an internal model containing an
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Allostasis Machine (AM): it acts as integrators of environment
and innate mechanisms, which result in a complex and highly
nonlinear internal state trajectory over time. To understand the
behavior of this organic machine, we will discuss the role of
allostasis in physiological regulation, which is influenced by
physiological adaptation, physiological constraints, learning,
and the fluctuations in the environment.

In this context, we propose that the brain is not a computer, or
extension of a computer, but an internal model that provides
output to an Allostasis Machine (AM). AMs are composed of
two parts, an internal model and a dynamical representation
of internal model output, the latter of which produced a com-
plex and highly nonlinear internal state trajectory over time.
We derive our definition of a machine from [9]: AMs are an
integrative mechanism that enable prediction of behavior at
multiple scales. AMs are a representation of internal state as
it interacts with the environment. In this way AMs are gov-
erned by the constraints of both environmental physics and
cell/molecular biology of the nervous system. To understand
the behavior of this organic machine, we will discuss the role
of allostasis in physiological regulation, which is influenced by
physiological adaptation, physiological constraints, learning,
and the fluctuations in the environment.

Role of AMs in Neuro-HCI Systems

We can begin to understand the role of AMs in Neuro-HCI
systems by understanding how the interactions between brain,
behavior, and environment are characterized by a form of self-
organizing stability called autopoiesis. Autopoietic systems
[28] are defined by fluctuating interactions between parts of
a system that continually change as they interact with the en-
vironment. This not only characterizes the interactivity of a
Neuro-HCI system, but directly supports the notion that the
stability of a given AMs as contingent upon both its short-
and long-term history. When autopoiesis is disrupted through
anti-homeostatic conditions [37], a system’s organization dis-
integrates and in a Neuro-HCI leads to poor performance. On
the other hand, autopoietic systems can demonstrate learn-
ing when the system’s configurations are transformed in a
beneficial manner [40]. The effect of perturbations on such
a system can be demonstrated by the role of capacity in at-
tention and memory. As a perturbation is experienced, the
current configuration of the internal model can overcome low-
magnitude perturbations, and capacity is maintained. At the
same time, the internal model changes its configuration so
that adaptive (or maladaptive) changes become possible. In
an example where perturbation strength is held constant, the
internal model will adapt and become more robust to future
perturbation. In walking through our examples of AMs, the
angle of perturbation and recovery characterize the strength
of the perturbation and the recovery capacity of the internal
model, respectively.

The relationship between information processing capacity and
noise is also a very important component of internal regulation.
It has been proposed [29] that so-called pink (1/f) noise char-
acterizes interaction patterns (or cognitive coupling) between
individuals and the technological environment. As noise is an
integral feature of interaction, most of the noise is tolerable to
the regulatory capacity of the internal model. However, the

individual can experience large bursts of nonlinear turbulence
that occur at multiple scales of complexity [25]. Multi-scale
noise can occur in many different types of Neuro-HCI systems,
including sensorimotor control [7]. Experiencing noise in this
unpredictable way can overwhelm the individual’s capacity to
recover. Understanding the strategies used by an individual in
the situations requires both a more formal representation of
internal regulation and more explicit internal model mecha-
nisms for the triggering/alleviation of breakdowns in cognitive
coupling. The AM approach captures this quite well: as we
will see, the combination of a self-regulating internal model
and a dynamical representation allow us to observe the effects
of these potential instabilities on performance in a naturalistic
content.

Homeostasis as Internal Regulation

From our perspective, the nervous system is an embodied, au-
topoietic system in which stability is determined by dynamic
regulation. While we propose that this form of regulation
involves allostasis, and particularly allostatic drive, it is neces-
sary to revisit Cannon’s [10] original concept of homeostasis.
Homeostasis refers to the regulation of internal state relative
to a set point or equilibrium, which can be derived from prop-
erties of the organism such as stress, psychophysiological sys-
tems, or emotional state. One demonstration of homeostasis
in intelligent systems is W.R. Ashby’s Homeostat [6], which
was the first machine to maintain a steady state in the face
of varying environmental input. Furthermore, homeostasis
allows us to think about regulation in terms of feedback loops.
Von Bertalanffy [8] describes this diagrammatic arrangement
as circular, and has been used to describe the nonlinear effects
resulting from interactions between environmental inputs and
internal feedback. Homeostasis is often said to be regulation of
the internal “milieu”, which implies that a very broad concep-
tual variable is responsible for our measurement of this state.
An internal state governed by homeostasis is an autonomous
adaptive system that acquires regulatory capacity either ac-
tively through encoding memories or passively through an
ability to recall past events [15]. Consequently, homeostasis,
according to Puglisi et al [3] is an equilibrium model, which
does not allow us to represent many far-from-equilibrium phe-
nomena.

While we can think of homeostatic regulation as a vectorized
dynamical system (not unlike time-series measurements of
a thermostat), applying homeostasis as a model for charac-
terizing change in the internal system forces us to reevaluate
the notion of the physiological milieu. Bernard initially con-
ceived of the internal milieu as an inherently fixed system
that is able to perfectly match any challenge imposed by its
environment [21]. The modern understanding of homeostasis
predicts that internal systems make two types of adaptations:
a regulatory adaptation to match the set point, and a dynamic
adaptation that allows the internal system to expand the range
of conditions under which the set point can be maintained.This
latter type of adaptation allows the internal system to expand
(and potentially contract) its homeostatic range [23], which
ultimately requires us to think more broadly regarding the
existence of stable states in our internal system.



Allostasis as Dynamic Homeostasis

While homeostasis allows us to think about internal regula-
tion over time, it does not lend itself to the application of
a more formal dynamical systems approach. Sterling [35],
[33] and Sterling and Eyer [17] have proposed allostasis as
an alternative to homeostasis. In their formulation, allostasis
provides a set of regulatory principles with respect to home-
ostasis, particularly by introducing a formal mechanism for
change over time (allostatic drive). Allostatic drive occurs
when a system is perturbed in some way by the environment.
Traditionally, these perturbations take the form of psychopsy-
chological stressors, but can also be represented by phenomena
such as multitasking distractions in a model of attentional ca-
pacity. Other authors such as Corcoran et al [4] and Pezzulo
et al [18] have made the claim that allostasis is a predictive
form of inference, and allows our internal model to respond
to future challenges in an anticipatory fashion. The mecha-
nism of allostatic drive, along with the cognitive implications
of allostatic control enable an internal model’s trajectory to
move away from the original setpoint and find new dynamic
equilibria.

ALLOSTASIS MACHINES

AMs are vectors that capture the perturbations and stable states
of a dynamical system. Given an initial condition (baseline),
this vector can either suffer negative deflections due to envi-
ronmental perturbation or positive recoveries due to the adapt-
ability of an individual’s internal model. The net movement of
the vector over time captures allostatic drive, which leads to a
regulated state. At any moment during this process, a perturba-
tion can be delivered to the internal state: the perturbation can
either temporarily distort the vertical (y-axis) component of
the vector. Consequently, the process either returns to normal
or creates a hysteretic distortion where the vector does not
return to baseline. A generic example of an AMs is shown in
Figure 1.
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Figure 1. A non-technical example of an AMs internal state output tra-
jectory, from initial condition to regulated state. Inset: demonstration
of the flow of time, from initial condition to regulated state.

Complexity of the Internal State

According to Bernard’s naive assumptions about the internal
milieu [6],the selective representations of most cognitive mod-
els need to to be considered as a complex, dynamical system.
Yet internal states are much more complicated than the out-
put of a simple dynamical system. Based on the variety of

internal models featured in the neuroscience literature, such as
those representing the cerebellum [13] and attention schema
for subjective processing [20], internal models generate rep-
resentations of cognitive states that are directly relevant to
behavioral outputs. As such, they could be defined as invariant
to psychophysiological states or innate mechanisms that might
influence this state. This becomes important when we take
into consideration regulatory mechanisms that determine an
individual’s internal state as it actively explores its environ-
ment.

These innate mechanisms can be represented in a number of
ways. Computational representations of the genome [1], [38],
particularly gene expression networks (GRNSs, see [36]), can
approximate both the constraints and adaptive capacity of an
organism’s internal biology on processing environmental in-
puts. Particularly interesting in the phenomenon of synthetic
effects that occur when multiple genes interact with each other
[16]. This level of description is utilized in the internal model
to facilitate robust and vulnerable responses to environmental
perturbations. Nonlinear effects also emerge from the opera-
tion of the internal model, as gene expression interacts richly
with the multiple sensory channels of naturalistic interaction
with the environment.

Trajectories of the Internal State

Although Figure 1 is meant to capture event-oriented signals
related to naturalistic behavior, the evolution of an internal
model is open-ended [2] in nature. In the context of AMs,
open-ended evolution is the continual reconfiguration of the
internal model with no explicit goal or objective. This means
AMs can sojourn to new regulatory regimes (and ultimately
stable states) that correspond to adaptive changes due to con-
tinual interaction with the environment. The representation
of internal model dynamics captures this dynamic balance
between environmental influence and biological robustness
as a generic dynamical system. Critically, our representation
of internal model output (Figure 1) captures the strength of
perturbations and recovery in the form of relative magnitudes
and phase angles (Figure 2).

Yet how do we understand these trajectories in terms of specific
interactions with tasks and the environment? One possible
definition, rooted in Psychophysics, is a sensory signal that
changes its magnitude with respect to time. Moving your
fingertips over a ridged surface results in environmental pertur-
bations of a given frequency and duration because perturbation
frequency depends upon the spatial location of each ridge as
well as the temporal interval between each ridge. This is fur-
ther dependent on the speed of the touch effector, which is
modulated by feedback from the nervous system. By contrast,
perturbation duration involves both speed of the touch effec-
tor and the overall capacity of the internal state to withstand
perturbations. In essence, this can be reduced to a simple
oppositional relationship: robustness of the internal state and
its trajectory versus the magnitude/duration of perturbation.
From this definition we can understand several components
that influence the dynamical trajectory of our AM. Figure 2
demonstrates these steps in graphical form. The first step is
to establish a baseline state (Figure 2a). Then a single per-
turbation of a given strength is delivered to the internal state



(Figure 2b). This magnitude has an effect on the strength of
a single perturbation (Figure 2c), which drives the state away
from the baseline in a negative direction. Perturbation depth
is generally at a 45 degree angle to the baseline, but can be
characterized by variable phase angles depending on whether
the perturbation is encountered in a gradual or sudden manner.
In our haptic ridges example, perturbations are rather sharp.
By contrast, haptic exploration of a thermal gradient would be
more gradual.
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Figure 2. A diagram of the external perturbation/internal state trajec-
tory relationship. Lack of recovery capacity (e.g. hysteresis) of our inter-
nal state trajectory is equivalent to allostatic drive

This leads us to a refractory period, during which the state tra-
jectory generally recovers at a symmetrical phase angle to the
perturbation (Figure 2d). Once again, this can depend on the
application context. However, the recovery of an internal state
trajectory does not always result in a return to the baseline
state. When recovery is not equivalent to perturbation strength,
then the trajectory is said to be hysteretic. Hysteresis might
result from multiple perturbations in rapid succession, or from
an insufficient memory of the previous state. The latter will
be common for out-of-distribution magnitudes. Finally, the
recovered internal state trajectory (Figure 2e) is dependent
upon the timing of additional perturbations, which can deter-
mine the likelihood of transition to a new state. In material
science, hysteresis is often referred to as a form of memory
[31]. While a memory system is not made explicit in AMs,
they nevertheless serve an integral role of their function.

One area for further understanding is how to characterize the
relative strength of a perturbation. Even when perturbations
are described in terms of single sensations (quantities such
as Newtons or Lumens), it is hard to describe their effect on
the internal state. One way to do this is to define the baseline
state as a mean background level of some sensory channel,
with local deviations from this value as a perturbation of mag-
nitude m. Corresponding to this is a distribution function
that can be estimated for the organism or agent that describes
a general degree of robustness to outliers, rare events, and
out-of-distribution phenomena.

Examples from Specific Environmental Representations

AMs are broadly applicable to a wide range of Neuro-HCI
systems. Our approach is particularly amenable to natural-
istic experiments, where organisms or agents are allowed to

freely explore their environment. Future work will also in-
clude the study of cognitive phenomena such as visual flow
and spatial cognition. In these cases, perturbations would be
introduced through controlled misalignments of visual cues
and affordances. This will require the integration of AMs
with agent-based models such as developmental Braitenberg
Vehicles [34] or serve as predictive models for Neuroimaging
and Psychophysiological data.

As the AM approach might also serve as the basis for com-
putational models of human-computer interaction, one highly
relevant area is the study of virtual environments. With respect
to hyperrealistic virtual environments, perturbations might
take the form of latencies and stimuli of differential resolution.
More impressionistic and fantastical virtual representations
are less dependent on being as faithful to realism. However,
affordances are still required to navigate the environment, and
disruptions to their recognizability and relative location may
serve to introduce perturbations of different frequencies and
magnitudes.

AMs also allow us to model adaptation to virtual environments
that occur both as a consequence of sensory accommodation
[19] and longer-term biological plasticity [5]. For example,
we might expect the ability to recover from a perturbation to
be weakened upon first entering the virtual environment, while
accommodation allows for the response to perturbation to be
more robust over time [19]. Similarly, walking on a treadmill
at degrees of incline while interacting with a CAVE environ-
ment [5] can have the same effect on psychophysiological
indicators of performance.

DISCUSSION

AMs are decoupled from measurements of neuronal or net-
work output state, which makes them controversial as a model
of intelligent behavior. Although they are simplistic represen-
tations for systems with many interacting components, they
nevertheless serve as a heuristic to understand the mapping
between internal state and the effects of a naturalistic envi-
ronment. We can also use AMs to understand the effects of
feedback at multiple temporal scales. This might be useful in
the approximation of phenomena such as predictive processing
[26]. Indeed, AMs allow for both minimal representational
capacity and evaluation of error minimization [39]. It is im-
portant to stress that “evaluation” does not imply optimization:
in the case of virtual environments, selective mismatch might
be a desirable feature of the interaction.

Furthermore, considering AMs from the perspective of exist-
ing theoretical work on embodied interaction is also important.
While we define a simple duality between an internal model
and the external environment, affordances encountered in the
environment present three- way interactions between an inter-
nal model, an external environment, and the body (morphol-
ogy) itself [14]. While morphology mediates the interaction
between internal and external worlds in this relationship, rep-
resentations of internal state serve to mediate between innate
mechanisms and environmental stresses. AMs might also help
us understand how technology usage interplays with the inter-
nal state. The idea that technology becomes incorporated into
the body over time [12] can be demonstrated quantitatively
using the AM approach. This can be accomplished by using



a range of model systems as a quantitative basis for a given
trajectory. Examples of these include directly measuring the
magnitude of perturbations such as attentional distractions or
inertial forces, employing dimensionality reduction techniques
on neurophysiological measurements, and using reinforcement
learning simulations to derive quantitative learning curves.
As perturbations are disruptions to performance, they result not
only from purely environmental factors, but from interactions
with affordances. Under normal circumstances, interactions
with affordances facilitate smooth interactions [11]. For exam-
ple, doorknobs can afford twisting movements, while handles
afford pulling movements. When these affordances are un-
clear or purposefully decoupled from environmental function,
a specific perturbation is introduced. In the language of inter-
action, the information transfer rate between environment and
individual is decreased due to an increase in noise [22]. This
can be understood in the context of task performance and tool
use. Tools that are compatible with the individual, particularly
those that require a set of familiar skills, serve to minimize
noise and maintain an allostasis machine in a stable state with
little to no hysteretic response.

Tools that are well-practised also serve as extensions of the
body schema [24], which has a basis in Primate physiology
[27]. The idea of tool embodiment has been developed by
/citealzayat to demonstrate how the internal model, tools, and
the environment interact to form a functional unit. As a given
tool becomes familiar to the individual, the tool becomes an
extension of the body schema. This involves attentional shifts
to the task rather than the tool, thus improving performance
on the tasks themselves. This is particularly advantageous
in virtual environments, where tools are not as familiar as
those found in real-world settings. This allows for technolo-
gies (tools in the environment) to become transparent with
respect to the individual /citewheeler, thus acting as a type
of affordance that assists in task performance. We can also
interpret the incorporation of tools and other components of
the environment into the body schema as a form of allostasis.
The notion of allostatic control is a form of internal model
regulation that acts as a form of selection for configurations
that minimise expected free energy during future interactions
/citekiverstein-sims. Not only does this imply that prediction
is a key component in regulation, but also that internal regula-
tion is constrained by energetic processes.

There are several problem domains that might provide po-
tential use cases in the future. The first of these involve the
use of sensorimotor affordances that require a smooth action-
perception loop and minimize the number and magnitude of
perturbations during performance. This could include some-
thing like a handwriting-assistance technology for people with
movement disorders. Musical interfaces that enable people
to keep rhythm with a task is another potential application
domain. The regulation and maintenance of spatial context
is yet another potential use case, whether that be in terms
of incorporating landmarks into the body schema or through
eliminating spatial perturbations due to mental rotations. Fi-
nally, these domains can be combined in the composition of
virtual environments, where perturbations are introduced due
to a host of potential cognitive mismatches.

Moreover, AMs can also be applied to a broad range of agent-

based settings, from social interaction to tests of biopsycho-
logical variation across a common set of interactions. In the
case of social interaction, the AMs of different individuals
can be compared during cooperation and competition. AMs
also lend themselves to understanding the psychophysiology
of cognitive states, particularly during continuous tasks like
driving [30]. We can even use AMs as the basis for game-
theoretic analysis, as switching between various internal states
can be modeled as a strategic pursuit. In conclusion, it is
possible to use agent-based modeling approaches to better
understand variation in AMs with respect to the potential dif-
ficulty of an environment given a large number of possible
internal representations.
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